
Website Search
with Apache Solr

(tutorial)

tcworld conference 2018 - Stuttgart, Germany
Scott Prentice, Leximation, Inc.

Introduction
Scott Prentice, President of Leximation, Inc.

Specializing in FrameMaker plugin development as well as
structured FrameMaker conversions, consulting, and
development. FrameMaker user/developer since 1991.

Developed DITA-FMx, a FrameMaker plugin for efficient
DITA authoring and publishing.

Consulting for custom Help systems, creative/functional
web applications, and EPUB solutions.

Why website search?
Keeps visitors on your site once they get there

Gets customers to the right information sooner

Gives you insight into what people need

Potential source for new product ideas

Layers of search
Global — Cross-site, cross-domain, and world-wide search
engines. Google, Bing, Yahoo, etc.

Vertical — Domain-specific, cross-site, and world-wide search
engines. Yelp, Truila, and others.

Site — Full site-wide search

Document — Search on a page or within a group of related
pages (Find?)

Website search options
Remote search service — Service provided by third party,
accessed through web form or API.

Static JavaScript — Pre-compiled static “index” accessed via
JavaScript to display matching results.

Custom search application — Server-side application (PHP,
Perl, Java, etc.), reading from collection

Apache Solr

Apache Solr
Open source enterprise search platform

Java application runs on Linux, Mac, Windows

Wrapper around Lucene indexing/search technology

Hit highlighting, faceted search, real-time indexing, rich
document support, Unicode compliant, really fast

REST API plus native client APIs

Solr setup options
Solr “standalone”

Single collection, no failover, or redundancy

Solr “cloud” (SolrCloud)
Collection spread across multiple servers (shards)

Supports failover and redundancy via Zookeeper
(distributed file system)

System requirements
Java 8 (Linux, MacOS, Windows)

Likely multiple machines (or VMs); min of 5 for SolrCloud.

Enough memory to support OS and applicaiton needs plus
full index(es) in memory; 8-16 GB or much more.

Search terminology
Crawl — Process of reading content from website or file
system. Creates a “feed” for indexing.

Index — Process of reading the “feed” and creating or
updating the search database or collection.

Collection — Compiled data generated by the indexing
process. Also, “index” or “search index.”

Shard or Core — One or more components that make up a
collection.

Installing Solr (demo)
Download archive

Extract

Install/setup (script for Linux systems only)

Start

Check Solr Admin

Casing conventions
These slides use the following casing conventions for  
special directory locations:

SOLR — Directory containing the Solr application files

SOLR-DATA — Directory containing the Solr data files

These directory locations will differ based on your
installation and operating system

Installing Solr (Linux)
Default install script ..

Creates “solr” user
Copies application files to /opt/solr (SOLR)

Creates data folders at /var/solr (SOLR-DATA)
Creates service at /etc/init.d/solr
Creates include script at /etc/default/solr.in.sh

After running the script, you’re ready to roll!

Installing Solr (Mac/Win)
Manually create application and data folder structure

Extract archive to application folder

Edit default include script (SOLR/bin/solr.in.sh or .cmd)
SOLR_PID_DIR="SOLR-DATA"  
SOLR_HOME="SOLR-DATA/data"  
LOG4J_PROPS="SOLR-DATA/log4j.properties"  
SOLR_LOGS_DIR="SOLR-DATA/logs"  
SOLR_PORT="8983"

Copy solr.xml and zoo.cfg from SOLR/server/solr to  
SOLR-DATA/data

Starting Solr
Linux (if installed as a service): sudo service solr start

Mac: SOLR/bin/solr start

Win: SOLR/bin/solr.cmd start

This starts Solr in “standalone” mode

Now check Solr Admin! http://localhost:8983/solr

Solr Admin

Create empty collection
Copy “default” schema config files to data folder

$ cd SOLR/server/solr/configsets 
$ cp -r _default SOLR-DATA/data/test01

In Solr Admin, use  
Core Admin to create  
new “test01” collection

Upload sample content
Use “post” tool to upload sample data

$ cd SOLR  
$./bin/post -c test01 example/exampledocs/*

Post tool uses default algorithm to extract data and  
upload to collection “test01”

Basic testing
Solr Admin > Core Selector > test01 > Query

“Execute Query” using default *:* query

Review fields and values resulting from default schema  
and sample content

This schema “works,” but likely not ideal

Solr Admin - Execute Query

Solr query primer
q=<FIELD>:<VALUE>

q=*:* (match all)

q=cat:electronics

q=name:ipod

q=price:[10 TO 20]

q=manufacturedate_dt:[NOW-13YEARS TO NOW-12YEARS]

Solr query primer
List all facets for “cat” field:  
facet=on&facet.field=cat&rows=0&start=0

Include specific fields: fl=id,name,manu

Specify format (default JSON): wt=xml or wt=csv

Website integration options
Search form with list of results

Search context with hit highliting

Faceting for tags or categories

Auto-complete, auto-suggest, spellchecking

Auto-generate related links or “more like this”

Use REST API or native client languages

Content sources
Content may come from various sources ..

Documentation (content, metadata, tags)

User comments

Product support cases

Marketing material

External website content

Schema
Defines the structure and fields in your index

Based on type of integration and type of content

Defines field types with optional index or query analyzers
(tokenizers or filters)

Defines static or dynamic fields

Each Solr server can have multiple collections with  
different schemas

Simple schema
<schema name="myschema 1.0" version="1.6"> 
 <uniqueKey>id</uniqueKey> 
 
 <fieldType name="string" class="solr.StrField"
sortMissingLast="true" docValues="true"/> 
 
 <field name="id" type="string" required="true"
indexed="true" stored="true"/> 
 <field name="title" type="string"/> 
 <field name="type" type="string"/> 
 <field name="content" type="string"/> 
</schema>

Schema nodes
<fieldType> — All possible types of fields in this schema

<field> — Static fields in this schema

<dynamicField> — Dynamic fields (wildcard match)

<copyField> — Duplicates the named field to another field

Schema - <fieldType>
<fieldType name="NAME" class="CLASS" [MORE] > 
 [<analyzer type="TYPE">] 
</fieldType>

NAME — Unique name for field type

CLASS — Java class for processing (may be user-defined)

MORE — Additional class-specific properties

TYPE — Analyzer type (index, query, or both), may contain
tokenizer and multiple filter nodes (classes)

fieldType analyzers
Modifies the data as it’s indexed or queried

Make use of default tokenizers and filters

Can create your own (via Java)

Very powerful feature

Schema - <field>
<field name="NAME" type="TYPE" [MORE]/>

NAME — Unique name for field to match in feed

TYPE — References the name of the associated fieldType

MORE — Additional type-specific properties

Schema - <dynamicField>
<dynamicField name="NAME" type="TYPE"  
 [MORE]/>

NAME — Unique name for field with leading or trailing
asterisk for wildcard match in feed

TYPE — References the name of the associated fieldType

MORE — Additional type-specific properties

Schema - <copyField>
<copyField source="SOURCE" dest="DEST"  
 [maxChars= "NUM"] />

SOURCE — Name of field to copy (may include leading/
trailing asterisks)

DEST — Name of field to copy to

NUM — Limits the number of characters (optional)

Updating configuration
Rename managed-schema to schema.xml and edit

Update solrconfig.xml

Update stopwords, synonyms, locale-specific files

Delete unused files

Restart Solr: SOLR/bin/solr restart  
(or sudo service solr restart if using service on Linux)

Uploading content to Solr
Can be in many formats (HTML, XML, JSON, PDF, RTF, ..)

Best to use XML or JSON to sync with schema

One or more files with content

Should be flat (nested structures are possible)

XML feed
<add> 
 <doc> 
 <field name="id">filename-one</field> 
 <field name="title">Some Title</field> 
 <field name="type">tutorial</field> 
 <field name="content">All of the doc content.
Best to remove line breaks and markup. </field> 
 </doc> 
 <doc> 
 <field name="id">filename-two</field> 
 <field name="title">Another Title</field> 
 <field name="content">More content.</field> 
 </doc> 
 … 
</add>

JSON feed
[{ 
 id: "filename-one", 
 title: "Some Title", 
 type: "tutorial", 
 content: "All of the content for the document.
Best to remove line breaks and markup." 
 },{ 
 id: "filename-two", 
 title: "Another Title", 
 type: "tutorial", 
 content: "And more content." 
 } 
 … 
]

Using “real” data (demo)
Create new schema

Generate feed from content

Upload feed to index

Develop search UI (JavaScript)

Create new schema
Copy “default” schema config files to data folder

$ cd SOLR/server/solr/configsets 
$ cp -r _default SOLR-DATA/data/test02

Edit schema config files based on your needs (simplify)

Schema fields must match data being indexed

In Solr Admin, create new “test02” collection 
(watch for and correct errors)

Generate and upload feed
Process your content to generate a JSON feed 
(see html2json.pl script)

Use curl to upload feed to collection
$ curl 'http://localhost:8983/solr/test02/update/json?
commit=true' -H 'Content-type:application/json' --data-binary
@test02.json

Test queries in Solr Admin

Updating content
Uploading another feed ..

duplicate IDs replaces existing records
new IDs add those records

Delete entire index ..
$ curl 'http://localhost:8983/solr/test02/update? 
commit=true' -H 'Content-Type: text/xml' --data-binary
'<delete><query>*:*</query></delete>'

Develop a search UI
REST API is very flexible and easy to test

Simple JavaScript UI is good place to start

Use jQuery to make the scripting easier

Sample JavaScript provides options for basic search  
results or hit highlighting (customize as needed!)

CORS?
Cross-Origin Resource Sharing

Restricts sharing of resources across domains

Will be an issue if requesting Solr results via JavaScript  
(not with PHP or other server scripting)

Need to edit this file in Solr installation 
SOLR/server/solr-webapp/webapp/WEB-INF/web.xml

See: https://opensourceconnections.com/blog/
2015/03/26/going-cross-origin-with-solr/

Further investigation
Consider implementing:

Auto-suggest
Auto-complete

Spell checking

Try auto-generating related links based on tags

Other creative ideas?

Web crawlers
Apache Nutch — Integrates directly with Solr (Java)

Heritrix — Internet Archive’s open-source, extensible, web-
scale, archival-quality web crawler (Java)

GNU Wget — Command line tool for retrieving files using
HTTP, HTTPS, FTP and FTPS. (Linux)

See “Top 50 open source web crawlers”

Taking it to production?
Restrict access to Solr (iptables command on Linux)

Consider using SolrCloud

Provides failover and redundancy
Zookeeper adds complexity
Multiple servers

Server access issues?
What if I don’t have easy access to a server?

linode.com — Very affordable ($5/mo or more) linux
servers for development and testing.
websolr.com — Reasonable cost ($59 or $549/mo).  
Fully configured Solr installations. You provide the
schema and content.

Wrap-up
Solr is an incredibly powerful and full featured search
platform that can be implemented in stages

Solr does require development resources, but it’s not
necessarily “rocket science”

Solr gives you control over your customer’s website  
search experience

Resources
Apache Solr — lucene.apache.org/solr/

Apache Solr Reference Guide — lucene.apache.org/solr/guide/7_5/

solr-user mailing list — lucene.apache.org/solr/community.html

Top 50 open source web crawlers — bigdata-madesimple.com/top-50-
open-source-web-crawlers-for-data-mining/

Scott Prentice <scott AT leximation.com> — www.leximation.com

Feedback
Your opinion is important!

Please tell us what you thought of the
lecture. We look forward to your
feedback via smartphone or tablet.

 
Scan the QR code
or visit the URL:

http://ux09.honestly.de

The feedback tool will be available
even after the conference!

