
Regular Expressions
for

Technical Writers
(tutorial)

tcworld conference 2016 - Stuttgart, Germany
Scott Prentice, Leximation, Inc.

modified 2017-05-13 (fixed typos)

Introduction
Scott Prentice, President of Leximation, Inc.

Specializing in FrameMaker plugin development as well as
structured FrameMaker conversions, consulting, and
development. FrameMaker user/developer since 1991.

Developed DITA-FMx, a FrameMaker plugin for efficient
DITA authoring and publishing.

Consulting for custom Help systems, creative/functional
web applications, and EPUB solutions.

Disclaimer
This information is not exhaustive or complete

Discuss regex features that may be most useful to  
technical writers

Designed for beginners or infrequent regex users

(However, some advanced topics are discussed)

Audience participation
Yes!

Please ask questions when they come up

Think of tasks you’re faced with that might be solved  
with regular expressions

I’ll ask for those tasks in the Demo portion

Regular expression?
Regular expression, AKA “regex”

Text string describing a search pattern

Way beyond wildcards

May also define a replacement string

Replacement may contain content extracted from match

Where can you use a regex?
Many authoring tools provide regex support

Most “serious” text editors

Scripting languages like Perl, PHP, JavaScript, Python, Ruby

Unix utilities like grep, sed, and awk

Compiled programming languages like Java, C#, VB.NET

Anything with a “regex engine”!

Benefits
Powerful searching

Complex string replacements

Intelligent modifications

Text format conversions (this is huge)

HTML or XML to CSV (or the other way around)

HTML or XML cleanup

But, better than wildcards?
Yes. Much better.

Wildcard search/replace is fine for simple patterns

Regex is like a mini programming language

Powerful syntax in very few characters

Problems?
Can appear very complex and overwhelming

Regex syntax varies based on the “engine” and
implementation

Watch out for “greedy” matches

Typically no “one right way” to do the same thing

Some people say you shouldn’t parse XML with a  
regex; as long as you understand the limitations it’s fine

Regex basics
Literal characters — z, zorch, FOO, F00

Metacharacters — \s, \S, \w, \W, \d, \D

Anchors/boundaries — ^, $, \b, \B

Quantifiers — *, +, ?, {2}, {3,5}, {3,}

Grouping — ., (…), (…|…), […], […-…], [^…]

Modifiers
Common modifiers (options) in many tools

g - global replace
i - case insensitive match

m - multiline mode (treats each line separately)
s - single-line mode (“dot matches all”, includes \r\n)

x - free-spacing mode (comments follow “#”)
Inline use: (?imsx) enables, (?-imsx) disables

Basic regex examples
Find the word .. “cat” (lowercase) — \bcat\b

.. “cat” or “dog” (lowercase) — \b(cat|dog)\b

.. “Cat” or “cat” — \b[Cc]at\b

.. “cat” followed by numbers — \bcat[0-9]+\b

.. that contains “cat” — \Bcat\B

.. that starts with “cat” — \b[Cc]at\B

Backreferences / captures
Backreferences match on an earlier group:  
class=(["']).+?\1

Capture group uses content of matched group in  
replacement

Tools use \1 or $1 to indicate captured string

To get “number” count open parens from start (except  
non-capturing groups)

Date regex examples
Match date in the form of yyyy-mm-dd or yyyy/mm/dd —  
\b\d{4}[/-]\d\d[/-]\d\d\b .. or  
\b\d{4}([/-]\d\d?){2}\b ..

Change the format of that date string to mm/dd/yyyy —  
m: \b(\d{4})[/-](\d\d)[/-](\d\d)\b  
 r: $2/$3/$1  

Naturally “greedy”
Regexes will typically match on as much as possible

Need to add code for minimal match

Match any char except “>” - [^>]+

Use ? for a minimal match - this .*? that

Use multiline mode (if possible) (?m)

HTML/XML regex examples
Extract tag name to $1 —  
 <([\w-]+)[^>]*>

Extract @class attribute value to $1 —  
<[\w-]+[^>]* 
class\s?=\s?"([^"]+)"[^>]*>

Extract content from tag to $2 —  
<([\w-]+)[^>]*>(.+)?</\1>

Demo…
Basic regex examples

Date regex examples

HTML/XML matching

Questions?

Where to start?
Start simple, really simple .. get used to your editor

Match on some literal characters

Match on string of a specific length

Try extracting and replacing portions of strings

Use a text editor and match on some code, HTML, CSV, or
whatever you’re likely to encounter

Tool-specific issues
Adobe FrameMaker

Adobe RoboHelp

Microsoft Word

MadCap Flare

Oxygen XML

Text editors and scripting languages

General differences
Text/code editors are line-based

Authoring tools are paragraph-oriented

Default may be single-line or multiline mode

Not all modifiers are available in all tools (try inline)

Use $1 or \1 format for capture replacement match?

Tool may or may not support backreferences

FrameMaker (unstructured)
Enable single-line mode with inline modifier (?s)

Match: \n for EOL, \x09 for line break (not \r),  
\t or \x08 for tab

Replace: \r or \x09 for line break, \x08 for tab

Use $1 format for captured replacement value

FrameMaker (structured)
No single-line mode; inline modifiers not supported

Each node defines a “line” (match cannot span nodes)

Use \n to match EOL (but that’s all it’ll match)

Use $1 format for captured replacement value

In XML View, use “Complex Expressions” option  
(limited features)

FrameMaker

RoboHelp
Single-line mode is default in design view

Multiline mode is default in source code view

Inline modifiers not allowed, no capture group replacements

Uses “Microsoft-style” regular expressions (??)

Newline (\n) only matches in code view

Supports find/replace in files

RoboHelp

MS Word
Special MS hybrid regex/wildcard syntax; not “real”

The * matches anything except EOL (non-greedy),  
and @ after a char or char class matches one or more

Use ^13 to find a paragraph mark and replace with ^p
(replacing with ^13 can be bad)

Find duplicate paras — (*^13)\1

Find duplicate “words” — (<[a-zA-Z0-9]@>) \1

MS Word

Flare
Best to use regexes in code view, seems unreliable in XML
Editor view (search is done on underlying code)

No single-line mode; inline modifiers not supported

Use \1 format for captured replacement value

Supports find/replace in files

Flare

OxygenXML
Enable single-line mode with “dot matches all” option

Use \1 format for captured replacement value

Supports find/replace in files

OxygenXML

TextWrangler
Choose “grep” option to perform regex search/replace

Enable single-line mode with inline modifier (?s)

Use \1 format for captured replacement value

Supports find/replace in files

TextWrangler

Scripting with regexes
Many languages provide regex modules

Perform batch processing

Easily repeat complex processing

Perl and JavaScript are common

Perl
Tightly integrated into language

Great for quick batch processing scripts

Platform independent

Find: if ($str =~ m/\bcat\b/i) { … }

Replace: $str =~ s/\bcat\b/dog/g;

JavaScript
Processing of HTML forms or other data

search() - returns the position of the match (-1 if none)  
var str = "Welcome to tcWorld";  
var pos = str.search(/tcworld/i);

replace() - returns the new value 
var ret = str.replace(/tcworld/ig,
"Stuttgart");

ExtendScript
Scripting language in FrameMaker and RoboHelp

Strip the full path and file name down to just the “name”  
var doc = app.ActiveDoc;  
var filename = doc.Name.replace 
 (/^.*?([^\\]+)\.fm$/i, "$1");

Regexes at the command line
grep, sed, and awk are Unix utilities (Windows too)

Often used together; pass output from one to another

Can be used in shell scripts

Wikipedia is a good place to start for more information on
these utilities

grep
grep = Global Regular Expression Print

Searches for regex matches in files (each line) or input

Only scans each line, so not great for *ML files

Lists all DITA “task” files (recursive from “here”)  
grep -rl "<task" *

Prints lines from CSV file with the specified pattern  
grep "\d{3}-[a-z]{4}" modes.csv

sed
sed = Stream EDitor

One of the earliest tools to support regexes (1973)

Line oriented matching or substitution

Replace cat with dog in file 
sed -ie 's/\bcat\b/dog/g' file.txt

awk
awk = surnames of creators (Aho, Weinberger, Kernighan)

Programming language for processing text files

Series of condition and action pairs

Each line in text file is a “record” broken up into “fields”

If condition matches in a line, the action is performed

Fields are separated by whitespace, or as specified

awk
Print the lines that contain cat or Cat  
awk '/\b[Cc]at\b/ {print $0}'
dogs.txt

Scan tab-delimited file for a name and print the first field
from each “record”  
awk 'BEGIN {FS="\t"} /[Jj]ohn/
{print $1}' datafile.txt  

Demo…
Simple Perl regex examples

JavaScript regex examples

grep, sed, awk examples

Audience task examples?

Questions?

Resources
RexEgg — www.rexegg.com
Regular-Expressions.info — www.regular-expressions.info

Mastering Regular Expressions — O’Reilly

Sample files — www.leximation.com/downloads/regex-samples
Scott Prentice <scott AT leximation.com> — www.leximation.com

Feedback
Your opinion is important!

Please tell us what you thought of the
lecture. We look forward to your
feedback via smartphone or tablet.

 
Scan the QR code
or visit the URL:

http://ta17.honestly.de

The feedback tool will be available
even after the conference!

